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Week I: Limits
We make the following notational conventions:

• For an arbitrary function f(x), we will denote by fn(x) for positive n to be the n-fold product
of f . We will denote by f (n)(x) as the nth derivative, and f−1(x) to be the inverse function to
f . If we wish to write something of the form 1

f(x) , more compactly, we will write (f(x))−1.

• If n > 0, then sinn x is to be the n-fold product of sin x. In other words sin2 x = (sin x) · (sin x).
If n < −1, we will never employ the notation sinn x, and if n = −1, then sin−1 x will be the
inverse function to sin, often denoted arcsin. The same holds for other trigonometric functions.

• The functions cscx, secx and cotx denote 1
sin(x) , 1

cos x and 1
cot x respectively.

• The function log x will always refer to the base 10 logarithm, while ln x will be base e ≈ 2.718 . . . ;
if we need to use logarithms in base a for some real number a, then will denote them by loga x.

Furthermore, there are some things in this course we have the ability to prove, some for which we can
provide a fake ‘almost proof’, and some for which we cannot prove in any manner. For statements we
can prove, the proof will always be followed by an italicized proof and end with a �. For statements
which we can provide a fake proof for, we will engage in some discussion motivating the statement
with some hand wavy techniques, and then state the result. For statements which we cannot prove in
manner, we simply state the result.
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1.1 Introduction and Motivation
Suppose you drop a ball off a building that is 500 meters tall, then results from physics tell us that
the height of the ball as a function of time is given by:

y(t) = −10 · t2 + 500 (1.1)

Note that the above function only makes physical sense on the interval [0, t0], where t0 is the moment
that the ball hits the ground. Since the height of the ball at t0 is zero, we can find t0 by setting (1.1)
equal to zero:

−10 · t2 + 500 = 0⇒ 10t2 = 500⇒ t2 = 50⇒ t = ±
√

50 = ±5 ·
√

2

We also know that we should take the positive square root, as negative time does not make physical
sense. It follows that our height function is physically defined on [0, 5·

√
5]. We now might ask ourselves

a variety of different physical questions about our falling ball, such as: what is the average speed of
the ball? This is a question we can answer with purely algebraic techniques; indeed we know the ball
travels a total of ∆y = −5001 meters over a span of ∆t = 5 ·

√
5 seconds, so the average speed, vavg,

is given by:

vavg = ∆y
∆t = 500

5 ·
√
s
≈ −70.71 m/s

However, what if we want to know the speed of the ball when it has traveled 250 meters? Or right
before it crashes into the ground? Or at any point along it’s trajectory? Answering these questions
requires more sophisticated techniques, the techniques of calculus. In fact, the field of calculus was
almost entirely motivated by questions of this form.

Our first step in answering such questions is to analyze the average velocity of our ball over a ∆t2
geometrically. Suppose we want to calculate the speed of our ball at t1 = 2, y(t1) = 460, then a good
place to start is to consider the average speed of the ball over an interval starting at t0, say [2, 5]. In
this case, vavg is given by:

vavg = ∆y
∆t = y(t1 + 3)− y(t1)

(t1 + 3)− t2
= 250− 460

3 = −70 m/s

Now, vavg is the slope of the line which goes through the points:

(t1, y(t1)) = (2, 460) and (t1 + 3, y(t1 + 3)) = (5, 250)

The function corresponding to this line3 is given by:

l(t) = vavg · (t− 2) + 460
1Here ∆y is negative as ∆y = yf − yi = 0− 500
2In generality ∆ means change in some quantity. In this case it the final time minus the initial time.
3i.e. the function whose graph is this line.
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We can then draw the following graph:
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The black line is l(t), the blue line is y(t), and we have marked two points on the graph, (t1, y(t1))
and (t1 + h, y(t1 + h)), where h = 3. The key insight is that if we could somehow take the average
speed over the interval [t1, t1], we would obtain the speed of the ball at (t1, y(t1)) because that interval
consists of only a single point. We cannot do this naively though, as our formula for average velocity,
i.e. the slope of the line passing through the end points of the interval would yield:

∆y
∆t = y(t1)− y(t1)

t1 − t1
= 0

0
which doesn’t make mathematical or physical sense! So, how can we rectify the situation? The next
key insight is that if we allow h to vary instead of being fixed, then as h gets closer and closer to zero,
since the interval becomes smaller and smaller, we get average velocities which are closer and closer to
the velocity at t0. Allowing h to vary makes vavg a function of h given by:

vavg(h) = ∆y
∆t = y(t1 + h)− y(t1)

t1 + h− t1
= −10(t1 + h)2 + 500− (−10t21 + 500)

h
=−10h2 − 20h · t1

h

This is a rational function, and as such is not defined at h = 0, however, for all h 6= 0, we have that:
vavg(h) = −10h− 20 · t1 (1.2)

because each term has at least one power of h, and we can divide by h when h is nonzero. In particular,
the graph of this function is the graph of the function f(h) = −10h− 20 · t1 with a hole at h = 0:
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So while we can’t actually plug h = 0 into our vavg to get the speed at t1, it is clear from the above
graph, that as h gets closer to 0, vavg(h) approaches the numerical f(0) = −20 · t1, which in this case
is −40 as t1 = 2. It therefore makes intuitive sense to say that the speed of the ball at t1 is −60 m/s.
Moreover, if we replace l(t) in our original picture with the line going through the point (−2, 460), at
a slope m = −60, we have the following:
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So the velocity of the ball at t1 = 2 is also the slope of the line tangent4 to the graph of y(t) at
(t1, y(t1)).

The entire process outlined above is called ‘taking the derivative at t1’. In particular, the process
of seeing what the value of vavg(h) is as h approaches 0 (even though vavg(h) is not defined at h = 0!)
is called ‘taking the limit of vavg(h) as h goes to zero’. We employ the following notation for this:

lim
h→0

vavg(h)

In particular, if we let t1 vary, we get a new function defined by:

y′(t) = lim
h→0

y(t+ h)− y(t)
h

By our earlier work, this is the same as:

y′(t) = lim
h→0

−10h2 − 20h · t
h

For all nonzero h this is equal to the equation (1.2), so the limit as h approaches zero is precisely
−20 · t. It follows that we have a function:

y′(t) = −20 · t

This is called the derivative of y(t), and for every t1 in the interval [0, 5 ·
√

2], when we plug in t1 to
y′(t), we get the velocity of the ball at the time t1, or equivalently the velocity of the ball at a height
of y(t1) meters.

The rest of the course, and much of calculus in general, is about studying the properties of deriva-
tives for various functions, but even when we delve deeper into abstraction, and away from the world
of physics, we should keep the above picture of a ball falling off a building in mind.

4By which we mean only glances the graph of the function at (2, 440), instead of intersecting it.
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1.2 Definitions and Examples
In the previous section, we motivated the idea of a derivative by examining a physical problem.
However, the process for finding the speed of a ball as it falls from a building relied on the notion of
‘taking a limit’ of a function, and in fact the concept of a derivative relies heavily on this idea. Due to
this we spend the next few sections, discussing limits, and their properties.

Limits essentially come in two flavors, we have limits as ‘x goes to positive or negative infinity’, and
limits as ‘x approaches a’, where a is some finite real number. The former is a way of characterizing
the long term behavior of a function f(x), and the later analyzes the behavior of f near a point a,
even if f(a) is undefined. We begin with limits of the form x goes to positive or negative infinity, and
employ the notation:

lim
x→∞

f(x) and lim
x→−∞

f(x)

Now limits of the above form can be a real number, can be ‘positive or negative infinity’, or they can
be non existent. When limits above the form are a real number say a, this means that as x gets bigger
and bigger, (or more and more negative), that the value of f(x) gets closer and closer to a. In other
words, in this situation we have that as x approaches positive (or negative) infinity, f(x) approaches
a. The next option is that f(x) ‘blows up’ as x approaches positive or negative infinity, by which we
mean that x gets bigger and bigger (or more and more negative) the value of f(x) continues to grow
in either the positive or negative direction. In this case, we have the limit as x approaches positive
or negative infinity is equal to positive or negative infinity, depending on which direction the function
grows. The final option is that the limit may fail to exist, in which case we simply write DNE. This
can happen if the long term behavior of the function is oscillatory like if f(x) = sin x; in this case the
function neither grows without bound, nor does it approach some constant, it just oscillates between 1
and −1 periodically, hence there is no value that f(x) approaches as x approaches positive or negative
infinity.

The quickest way of dealing with limits of these form is by using ‘big number logic’. This is best
taught via example:
Example 1.1. Let f(x) = x, then the graph of f(x) is:
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Now as we plug larger and larger and numbers into f(x), we just return that same number since
f(x) = x. In particular as x gets bigger f(x) bigger, so the long term behavior of f(x) is to get bigger
and bigger. When this occurs, we write:

lim
x→∞

f(x) =∞
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because f(x) will just keep growing as x grows. Similarly, when x gets more and more negative, f(x)
gets more and more negative, hence:

lim
x→−∞

f(x) = −∞

Example 1.2. Let f(x) = 2x, we can see from the graph of this function:
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that the limit as x approaches positive infinity is infinity, and that the limit as x approaches negative
infinity is 0. But how can we determine this with big number logic? The idea is that if x is getting
bigger, i.e. as x approaches positive infinity, then 2x also just gets bigger, as we are just taking larger
and larger powers of two. From this we conclude that:

lim
x→∞

2x =∞

However, if x is negative, then we are dividing 1 by larger and larger powers of 2. In particular, we
have the following infinite sequence when x is a negative integer:

1
2 ,

1
4 ,

1
8 ,

1
16 , . . .

So as we plug in more and more negative values for x, 2x gets closer and closer to zero, because we
get fractions with larger and larger denominators. It follows that:

lim
x→∞

2x = 0

Example 1.3. Let:

f(x) = 5x3 + 2x2 − x+ 1
x2 + 3x− 2

We want to determine the limit as x→∞ and x→ −∞. Unlike the previous two cases, this function
is not easily graphed by hand, so we have to rely solely on big number logic. Let us first determine
the limit as x → ∞; the point is that as x gets very very large ,the terms which contribute most to
the quotient:

5x3 + 2x2 − x+ 1
x2 + 3x− 2
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are only the highest order terms in numerator and denominator. In other words, if x is very very large,
then 5x3 + 2x2 − x+ 1 is very close to 5x3, because x3 will be so much larger than 2x2 − x+ 1. The
same holds for the denominator, hence:

lim
x→∞

5x3 + 2x2 − x+ 1
x2 + 3x− 2 = lim

x→∞

5x3

x2

= lim
x→∞

5x

=∞

Similarly, the same logic demonstrates that:

lim
x→−∞

5x3 + 2x2 − x+ 1
x2 + 3x− 2 = lim

x→∞

5x3

x2

= lim
x→−∞

5x

=−∞

Note that if we change the denominator to be a cubic:

f(x) = 5x3 + 2x2 − x+ 1
x3 + 3x− 2

then:

lim
x→∞

5x3 + 2x2 − x+ 1
x3 + 3x− 2 = lim

x→∞

5x3

x3

= lim
x→∞

5

=5

and:

lim
x→−∞

5x3 + 2x2 − x+ 1
x3 + 3x− 2 = lim

x→−∞

5x3

x3

= lim
x→−∞

5

=5

If we make the denominator a quartic:

f(x) = 5x3 + 2x2 − x+ 1
x4 + 3x− 2

then:

lim
x→∞

5x3 + 2x2 − x+ 1
x3 + 3x− 2 = lim

x→∞

5x3

x4

= lim
x→∞

5
x

=0

and:

lim
x→−∞

5x3 + 2x2 − x+ 1
x3 + 3x− 2 = lim

x→−∞

5x3

x4

= lim
x→−∞

5
x

=0
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In particular, big number logic gives us the following result:
Theorem 1.1. If p(x) and q(x) are polynomials such that:

p(x) = anx
n + · · ·+ a1x+ a0 and q(x) = bmx

m + · · ·+ b1x+ b0

for some positive integers m and n, and real numbers a0, . . . , an, b0, . . . bn, then:

lim
x→∞

p(x)
q(x) = lim

x→∞

anx
n

bmxm
and lim

x→−∞

p(x)
q(x) = lim

x→−∞

anx
n

bmxm

Example 1.4. Earlier we noted that limx→∞ sin x does not exist due to its oscillatory behavior. In
this example, we examine a similar function:

f(x) = sin x
ex

Using big number logic, we see that as x gets very large, we are dividing numbers between −1 and 1,
i.e. sin x, by an extremely large number ex. It follows that even though the function is oscillating, it
is getting closer and closer to zero as x approaches infinity, so:

lim
x→∞

sin x
ex

= 0

However, as x gets more and more negative, we are dividing a number between −1 and 1, i.e. sin x, by
a number getting closer and closer to zero since limx→−∞ ex = 0. It follows that sin x/ex is oscillating
between extremely large negative numbers and extremely large positive numbers, hence no limit exists,
as it is not growing in a consistent direction. Therefore:

lim
x→−∞

sin x
ex

does not exist

We now begin our handling of limits as ’x approaches a’ for some real number a. Instead of writing
‘limit of f(x) as x approaches a’ we employ the notation:

lim
x→a

f(x)

Just as the infinite limits, the ‘result’ of the above expression has three possibilities, all of which tell
us something about the behavior of f(x) near x = a. The first possibility is that:

lim
x→a

f(x) = L

for some real number L; what this means is that as x approaches, or gets closer and closer to a, the
values f(x) get closer and closer to a. Now note that that x could approach a from the left or the
right of a, so for the limit to be equal to L, f(x) has to approach L in both directions; we will delve
more into this later. An example of this case is our vavg(h) function from Section 1.1; as h approached
0 the value of vavg(h) approached the speed at which the ball was traveling at t0 = 2. In particular:

lim
h→0

vavg(h) = −40

The next situation is that:

lim
x→a

f(x) = ±∞

by which we mean that as x approaches a, f(x) grows without bound in the positive or negative
direction. In other words f(x) gets larger and larger, or more and more negative as x approaches a.
Finally, we can have that the limit of f(x) as x approaches a fails to exist. This is most commonly
found in the following situation, let:

f(x) =
{
x2 + 2 for x ≥ 0
−3x for x < 0

(1.3)
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The above notation means that for x < 0, f(x) = −3x and for x ≥ 0 f(x) = x2 + 2. The graph of this
function is given by:
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Now what should the limit of f(x) be as x goes to zero? The problem is that if x > 0, then as x gets
closer and closer to zero, f(x) gets closer and closer to 2, but if x < 0 then as x get closer and closer
to zero, f(x) gets closer and closer to 0. We clearly don’t have that f(x) is growing in a consistent
direction, and from our earlier discussion, f(x) can’t approach a consistent value L, so the limit as x
approaches f(x) does not fall into either of the previously discussed categories. In this case, we thus
say the limit as x approaches a of f(x) does not exist. Notation we say that:

lim
x→a

f(x) does not exist

Before delving into examples, we briefly formalize our analysis of the limit of f(x) as defined in (1.3).
Definition 1.1. Let f(x) be a function, and a a real number. We define the limit as x approaches
a from the left as a limit of f(x) where we only consider values of x < a. We denote this by:

lim
x→a−

f(x)

In other words, we only care if f(x) approaches L, grows in a positive or negative direction, or does not
exist while analyzing values of x which are less than a. Similarly we define the limit as x approaches
a from the right as a limit of f(x) where we only consider values of x > a. We denote this by:

lim
x→a+

f(x)

In particular, if f(x) is as defined in (1.3) we have that:

lim
x→a−

f(x) = 0 6= 2 = lim
x→a+

f(x)

We have the following result:
Theorem 1.2. Let f(x) be a function, and a a real number. Then the following are true:
a) If lim

x→a
f(x) = L, ∞, or −∞, for some real number L, then lim

x→a−
f(x) = lim

x→a+
f(x) =L, ∞ or

−∞ respectively.
b) If lim

x→a−
= lim
x→a+

= L, ∞ or −∞, then lim
x→a

f(x) = L, ∞, or −∞ respectively.

We now look at some examples:
Example 1.5. Let:

f(x) = sin x
x
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then the graph of f(x) is given by:
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From the graph of the function, it is easy to see that as x approaches 0 from the left, f(x) approaches
1, and as x approaches 0 from the right, f(x) approaches 1. We thus have that:

lim
x→0

sin x
x

= 1

This was easy since we could see the graph, but graphing this function by hand is difficult (I know I
wouldn’t be able to do it!); on the first homework you will calculate this limit formally with appealing
to the graph of the function.

1.3 Continuity
Note even if f(a) = L it could be the case that limx→a f(x) 6= L. Indeed consider the next example:
Example 1.6. Let:

f(x) =
{
−x2 + 1 if x 6= 2
2 if x = 2

Let us analyze the limit as x approaches 2 without appealing to a graphical argument. Since x2 + 1 is
a continuous function, i.e. we can draw it’s graph without lifting up our pencil, we have that as x gets
closer and closer to 2, x2 + 1 gets closer and closer to 5. One can see this with the following chart:

x −x2 + 1
1.9 -2.61
1.99 -2.96
2.01 -3.04
2.1 -3.41

It follows that limx→2 f(x) = −3, however from the definition of f(x), we have that f(2) = 2. Looking
at the graph of this function, we see that the fact that limx→2 f(x) 6= f(2) reflects the fact that f(x)
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is not a continuous function:
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With this example in mind, we give a different definition of a function being continuous:
Definition 1.2. Let f(x) be a function, then f(x) is continuous at a if:

lim
x→a

f(x) = f(a)

A function f(x) is continuous on it’s domain if for every real number a in the domain of f(x),
f(x) is continuous at a. A function is continuous if it is continuous for every real number. A
discontinuity of f(x) is a real number a such that f(x) is not continuous at a, or f(x) is not defined
at a. A discontinuity a of f(x) is a removable discontinuity, if:

lim
x→a

f(x) = L

for some real number L. A discontinuity a of f(x) is a jump discontinuity if:

lim
x→a−

f(x) = L− 6= L+ = lim
x→a+

f(x)

for some real numbers L− and L+. A discontinuity a of f(x) is an infinite discontinuity if:

lim
x→a+

f(x) = ±∞ or lim
x→a−

f(x) = ±∞

This definition, while more verbose and complicated than the ‘drawing a graph without lifting
up a pen’ definition, mathematically captures the spirit of the concept of continuity, and is therefore
the ‘correct’ definition for this concept. Trigonometric functions, exponential functions, logarithmic
functions, radical functions5 and rational functions are all continuous on their domains; that is they
are continuous everywhere they are defined. Polynomials, exponential functions, sin x and cosx are
examples of continuous functions, as they are defined everywhere.
Example 1.7. Let f(x) be the function from Example 1.6, then f(x) is continuous everywhere but
x = 2. Indeed, at x = 2 we have that limx→2 f(x) = −3 but f(2) = 2. It follows that 2 is a discontinuity
because f(x) is not continuous at 2. In particular, 2 is a removable discontinuity, because the limit as x
approaches 2 exists and is finite. This example demonstrates why it is called a removable discontinuity,
because we can alter the value of the function at one point to make f(x) continuous there.

5i.e. any function of the form xa where a is not a whole number
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Example 1.8. Let:

f(x) = x2 − 9
x+ 3

then f(x) is not defined at x = −3 as we will divide by zero. However, for all values x 6= −3, we have
that:

x2 − 9
x+ 3 = (x+ 3)(x− 3)

x+ 3 = x− 3

It follows that limx→−3 = −6, so f(x) is not continuos at x = −3, because f(x) is not defined at
x = −3 but it’s limit exists, so −3 is a removable discontinuity. Indeed, if we define:

g(x) =
{
x2−9
x+3 if x 6= −3
−6 if x = −3

then g(−3) = −6, and limx→−3 g(x) = −6 so g(x) is continuous. We have in a sense removed the
discontinuity with g(x).
Example 1.9. Consider the function f(x) as defined in Equation 1.3. Then the limit as x approaches
0 of f(x) does not exist, so f(x) is not continuous at x = 0. It follows that 0 is a discontinuity point,
and it is a jump discontinuity because limx→0+ f(x) = 2 and limx→0− f(x) = 0. The graph of f(x)
demonstrates why we call such a discontinuity a jump discontinuity, because f(x) ‘jumps’ from one
value to the next at x = 0.
Example 1.10. Let:

f(x) = 1
x

then f(0) is undefined as we would be dividing by zero. As we approach 0 from the left, we are
dividing by negative numbers closer and closer to zero, hence f(x) is approaching negative infinity.
As we approach 0 from the right, we are dividing by smaller and smaller positive numbers, so f(x) is
‘blowing up’ and approaching positive infinity. It follows that:

lim
x→0+

f(x) =∞ 6= −∞ = lim
x→0−

f(x)

So we have that the limit as x approaches zero does not exist, that x = 0 is a discontinuity point, and
in particular it is an infinite discontinuity. If instead:

f(x) = 1
x

2

then we have that the limit as x approaches 0 is ∞ because the left and right handed limits agree,
however 0 is still an infinite discontinuity of f(x).

We end the section with the following result on limits, known as the limit rules, and then use them
to compute some examples.
Theorem 1.3. Let a be a real number, and f(x) and g(x) defined for all x 6= a on some open interval
containing a. Moreover, suppose that

lim
x→a

f(x) = L and lim
x→a

g(x) = M

for some real numbers L and M , then the following results hold:
a) lim

x→a
(f(x) + g(x)) = lim

x→a
f(x) + lim

x→a
g(x) = L+M .

b) lim
x→a

(f(x)− g(x)) = lim
x→a

f(x)− lim
x→a

g(x) = L−M .

c) lim
x→a

(f(x) · g(x)) = lim
x→a

f(x) · lim
x→a

g(x) = L ·M
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d) If M 6= 0, then:

lim
x→a

f(x)
g(x) =

lim
x→a

f(x)

lim
x→a

g(x) = L

M

e) If f(x) is continuous at M , then

lim
x→a

f(g(x)) = f
(

lim
x→a

g(x)
)

= f(M)

The above rules, and your challenge homework imply that polynomials are continuous for all real
numbers. We now show that rational functions are continuous on their domain; showing that radical
functions are continuous on their domain is a fact we take for granted as it is harder to show for all
real numbers.
Example 1.11. Let f(x) be a rational function, then f(x) is of the form:

p(x)
q(x)

for some polynomials p(x) and q(x). The domain of f(x) is all real numbers such that q(x) 6= 0, so for
any a such that q(a) 6= 0, we have that:

f(a) = p(a)
q(a)

Since polynomials are continuous, we have that by d) of the limit rules:

lim
x→a

f(x) =
lim
x→a

p(x)

lim
x→a

q(x) = p(a)
q(a)

so f(x) is continuous on it’s domain because it is continuous at every real number for which it is
defined.

We claimed earlier that sin x and cosx were continuous functions by appealing to their graphs.
However, every graph we draw is really only over some interval (a, b), so we have only shown that sin x
and cosx are continuous over some some small interval, usually including 0. In the following example,
we show that sin x is continuous at all real numbers:
Example 1.12. Let a be a real number, then we need to show that lim

x→a
sin x = sin a. Note that

sin x = sin((x− a) + a) because x = x− a+ a. Using the trigonometric identity:

sin(θ + γ) = sin θ cos γ + cos θ cos γ

we find that:

sin x = sin(x− a) cos a+ cos(x− a) sin a

Using the first limit rule, we find that:

lim
x→a

sin x = lim
x→a

(sin(x− a) cos a) + lim
x→a

(cos(x− a) sin a)

We can view sin a and cos a as constant functions, hence using c) of Theorem 1.3, and the fact that
constant functions are continuous, we have:

lim
x→a

sin x = cos a · lim
x→a

sin(x− a) + sin a · lim
x→a

cos(x− a)

13



Since lim
x→a

x − a is equal to zero as x − a is a continuous function, and sin x and cosx are continuous
at zero6, we have that by e):

lim
x→a

sin x = cos a · sin
(

lim
x→a

x− a
)

+ sin a · cos
(

lim
x→a

x− a
)

= cos a · sin 0 + sin a · cos 0
= sin a

meaning that sin x is continuous!
Using the limit laws, and properties of continuous functions, we can calculate many limits, but what

about when the limit laws don’t apply? For example, so suppose that f(x) and g(x) are functions,
satisfying lim

x→a
f(x) = 0, and lim

x→a
g(x) = 0? Then if we naively try to apply the limit laws to their

quotient we get:

lim
x→0

f(x)
g(x) = 0

0

which doesn’t make any sense. We have already seen how to deal with problem in certain cases such
as Example 1.8, but we now provide an example of a more complicated situation.
Example 1.13. Let:

f(x) = x− 2√
8− x2 − 2

Note that there are two constraints on the domain of this function, namely that 8− x2 is greater than
or equal to zero, and that

√
8− x2 does not equal to 2. It follows that the domain of this function is

given by7: [
−2
√

2,−2
)⋃(

− 2, 2
)⋃(

2, 2
√

2
]

We want to find the limit of f(x) as x approaches 2. Both the top function and the bottom function
are continuous at x = 2, but if we naively apply the limit laws, then we end up with 0/0, which as we
mentioned earlier is no good. Instead, we should algebraically manipulate the equation by noticing we
can ‘rationalize the denominator’. Recall the difference of squares formula:

(a− b)(a+ b) = a2 − b2

If we set a =
√

8− x2, and b = −2, then we have that:

(
√

8− x2 − 2)(
√

8− x2 + 2) = 8− x2 − 4 = 4− x2

It follows that for all x:

f(x) = x− 2√
8− x2 − 2

·
√

8− x2 + 2√
8− x2 + 2

=(x− 2)(
√

8− x2 + 2)
4− x2

=(x− 2)(
√

8− x2 + 2)
(2− x)(2 + x)

=(x− 2)(
√

8− x2 + 2)
−(x− 2)(2 + x)

6You can draw their graph on the interval (−π, π) to see this!
7We do this by first finding the interval on which 8 − x2 ≥ 0, and then removing the solution to

√
8− x2 = 2 from

said interval.
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where in the third step we have applied the difference of squares formula again, and in the final step
we pulled out a negative 2. For all x 6= 2 we can set (x− 2)/(x− 2) equal to one, so this simplifies to:

f(x) = (
√

8− x2 + 2)
−(2 + x)

Now we can apply the limit laws as both the top and the bottom functions have non zero limits x
approaches 2. Therefore:

lim
x→2

f(x) =
lim
x→a

(√
8− x2 + 2

)
lim
x→a
− (2 + x)

=
√

8− 4 + 2
−(2 + 2)

=− 1

This process for solving limits is called rationalizing the denominator.

1.4 The Squeeze Theorem
In this section we go over the Squeeze Theorem; this is conceptually a vital tool to the study of
limits, and many of the limits we encounter naturally in our study of calculus will rely on it. Usually,
the arguments surrounding the use of the squeeze theorem are tricky, that is why problem II on your
challenge homework has you work through some examples on your own (though some of these examples
are found in your textbook).

The theorem is as follows:
Theorem 1.4. Let a be a real number, and f(x) a function defined for all x 6= a on an interval
containing a. If g(x) and h(x) are functions defined for all x 6= a on an interval containing a satisfying:

lim
x→a

g(x) = L = lim−x→ ah(x)

and for all x 6= a:

g(x) ≤ f(x) ≤ h(x)

then lim
x→a

f = L as well. Similarly if:

lim
x→a±

g(x) = L = lim−x→ a±h(x)

and for all x < a (for left hand limits) or x > a (for right hand limits)

g(x) ≤ f(x) ≤ h(x)

then lim
x→a±

f = L as well.

What exactly is this theorem saying? Well it is saying that if the value of f(x) at every point lies
between g(x) and h(x) at that point, then as x approaches a, f(x) must approach L because so do
g(x) and h(x)! Say for example L = 3, if f(x) is constantly greater than something approaching 3,
and less than something approaching 3, then f must also approach 3, as there are no other between 3
and 3. This should feel intuitively obvious once you start playing around with the idea. I will show
you one harder example, and leave the rest of the exploration up to you on the homework set8

8Don’t worry, I won’t ever ask you to use the squeeze theorem on an exam or a daily warm up.
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Example 1.14. The following function will be of great importance to us in the future:

f(x) = ex − 1
x

We want to find the limit of the above function as x approaches 0. If we plug in 0 then we get 0/0
so the limit laws can’t help us here, and unfortunately there is no clever algebraic trick we can use to
make the limit tractable as in Example 1.13. We will have to use the squeeze theorem. We will have
to use the fact:

1 + x < ex

for −1 < x < 1 which can be seen from the following graph:

−1 −0.5 0 0.5 10

1

2

3

time

he
ig

ht

If we replace x with −x we get that:

1− x < e−x

Multiplying both sides by ex, and 1/(1− x) we obtain the following inequality:

ex <
1

1− x

We thus have that:

1 + x < ex <
1

1− x

subtracting 1 from both sides we get that:9

x < ex − 1 < x

1− x

Now, we want to divide by x, to get the desired inequality, but we have to be careful. When we divide
by positive x nothing changes, so for 0 < x < 1 we have:

1 < ex − 1
x

<
1

1− x
9The last part of the inequality comes from the fact that 1

1−x
− 1 = 1

1−x
− 1−x

1−x
= x

1−x
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However, when we divide by x for x < 0 the inequality changes direction because dividing by a negative
number changes the sign.10 It follows that for −1 < x < 0 we have that:

1
1− x <

ex − 1
x

< 1

Now we have that both 1/(1− x) and 1 are continuous on their domain, hence their limits exits at 0,
and are both equal to 1. It follows by the squeeze theorem that:

lim
x→0+

ex − 1
x

= lim
x→0−

ex − 1
x

= 1

hence

lim
x→0

ex − 1
x

= 1

Week II: Intro to Derivatives
2.1 Definition and Examples
In Section 1.1 we calculated the instantaneous velocity of a ball as it fell from a building. More
precisely, we had a function:

y(t) = −10t2 + 500

which gave us the height at which the ball was at any time t ≥ 0. We argued that the instantaneous
velocity at t0 = 2 should be the average velocity of the ball over the interval [2, 2]. The problem is that
the average velocity over this interval is:

∆y
∆t = y(2)− y(2)

2− 2 = 0
0

which doesn’t make sense. Our fix was to define a function vavg(h) which gives us the average velocity
of any interval of the form [2, 2 + h], and then argue that as h got closer to zero, vavg(h) approached a
finite value which should be the instantaneous velocity. With our newfound language of limits, we can
phrase this as follows: the instantaneous velocity of the ball at t0 = 2, denoted v(2) is given by:

v(2) = lim
h→0

y(2 + h)− y(2)
h

With this we can define a velocity function by:

v(t) = lim
h→0

y(t+ h)− y(t)
h

= lim
h→0

−10(t+ h)2 + 500 + 10t2 − 500
h

= lim
h→0

−10t2 − 20th− 10h2 + 10t2
h

= lim
h→0

−20th− 10h2

h

= lim
h→0
−20t− 10h2

=− 20t

With these results in mind, we employ the following definition:
10Think about what happens if you multiply 3 < 5 by −1, do you get −3 < −5? or −5 < −3?
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Definition 2.1. Let f(x) be a function, then f is differentiable at a if the limit:

lim
h→0

f(x+ h)− f(x)
h

is equal to a real number we denote by f ′(a). If this limit does not exist, or is infinite, we say that f
is not differentiable at a. We call f ′(a) the derivative of f at a, and define a function:

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

which we call the derivative of f . The domain of this function consists of all real numbers where
f is differentiable. The second derivative, is the derivative of the derivative, and is denoted f ′′. It
comes from taking the derivative twice. We can do this any amount of times actually, and denote the
nth derivative by f (n).

Note that for f to be differentiable at a it must be defined at a. Furthermore, we remark that some
people employ the Leibniz notation:

f ′ = df

dx
and f ′(a) = df

dx
|a = df

dx
(a)

for the derivative of f and the derivative of f at a respectively. This notation comes from the idea
of of the derivative being an ‘infinitesimal average rate of change’. In particular, the average rate of
change over some interval [a, b] is given by:

∆f
∆x = f(b)− f(a)

b− a
and so our limit definition of a derivative, is like looking at infinitely small changes in f , called df ,
divided by infinitely small changes in x called dx. This is a fine way to think about these concepts,
but we stress that the derivative is not a fraction. Higher order derivatives are written as:

f (n) = dnf

dx

You will show on your challenge homework this week that if f is differentiable at a it is also
continuous at a. There are however, examples of continuous functions which do not admit a derivative
everywhere:
Example 2.1. Let f(x) = |x|, then for all x ≤ 0 we have that f(x) = −x and for all x ≥ 0 we have
that f(x) = x. Let a < 0 then:

f ′(a) = lim
h→0

f(a+ h)− f(a)
h

As h gets closer and closer to zero from the left and the right of a, we have that a+ h is still negative,
hence:

f ′(a) = lim
h→0

−(a+ h)− (−a)
h

= lim
h→0
−h
h

= −1

For a > 0, the same argument shows that:

f ′(a) = 1

We however have a problem at a = 0, when h approaches 0 from the right it is always positive, and
when h approaches 0 from the left it is always negative. It follows that when taking the limit we have
to be careful about which side we are approaching from. Proceeding with the calculation, we have
that:

lim
h→0−

f(h)− f(0)
h

= lim
h→0−

−h
h

= −1
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while:

lim
h→0+

f(h)− f(0)
h

= lim
h→0+

h

h
= 1

so f ′(0) does note exist, and |x| is not differentiable at x = 0.
Before calculating more examples of functions, we wish to provide a geometric interpretation of

the derivative. Our original motivation came from physics, where we thought of the derivative of a
distance function as giving us a velocity function; but in full generality what is the derivative actually
telling us? Well, the average rate of range of f on an interval [a, b] is the slope of the line passing
through the points (a, f(a)) and (b, f(b)). We can thus interpret the derivative of f at a as the slope of
a line passing through (a, f(a)), but there are infinitely many such lines, parameterized by their slope,
so which one is it? It turns out this line is a very special line, it is the line tangent to the graph of f
at a. By this we mean that our line doesn’t intersect our graph at (a, f(a)), but instead just glances
off it. The following image illustrates what we mean by this:
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The derivative is thus the slope of the tangent line at a point, and the slope of the tangent line is akin
to a form of instantaneous rate of change. In other words, the derivative measures how the function is
changing at any point. Importantly, and we will explore this topic in depth later, for h very close to
zero, we can approximate f(a+ h) by f(a) + h · f ′(a) This because as we zoom in, the tangent line to
f at a is a good approximation for f , and this line is precisely:

l(x) = f ′(a) · (x− a) + f(a)

so plugging in x = x + h, we obtain that that l(a + h) = f ′(a) · h + f(a) which, as mentioned, is
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approximately f(a+ h). This is easier to see if we actually zoom in:
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Note that this discussion implies that if f ′(a) > 0 then the function f is increasing at a, if f ′(a) < 0
then f is decreasing at a, and f ′(a) = 0 then f is not changing at all a.

How do we then interpret Example 2.1? What does it mean for the derivative of a function,
especially a continuos functions, to not exist? We have the following picture:

−4 −2 0 2 4
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Essentially, there is not just one m such that l(x) = mx is tangent to the graph of |x|, but infinitely
many. The slope of the line tangent to |x| at x = 0 is thus undefinable. This is because the how the
value of |x| is changing alters abruptly at x = 0. Indeed, for all x < 0, we have that |x| is decreasing
at a constant rate of −1, while for x > 0 it is increasing at a constant rate of 1. This abrupt change
in the functions rate of change is demonstrated by the graph of |x| being ‘pointy’, or not ‘smooth’ at
x = 0. We can thus further interpret the derivative existing at a point as the graph of a function being
smooth at that point with no sharp corners or points.

With all of the above in mind, we have a new tool, namely the derivative, and we should start
calculating some examples. We first want to show the following:
Theorem 2.1. Let f and g be functions differentiable a, and c be a real number. Then (f + g) and
c ·f are differentiable functions satisfying (f +g)′(a) = f ′(a) +g′(a) and (c ·f)′(a) = c ·f ′(a). In other
words, we have that as functions:

(f + g)′ = f ′ + g′ and (c · f)′ = c · f ′
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Proof. By our limit laws for addition:

(f + g)′(a) = lim
h→0

(f + g)(a+ h)− (f + g)(h)
h

= lim
h→0

f(a+ h) + g(a+ h)− f(h)− g(h)
h

= lim
h→0

f(a+ h)− f(h)
h

+ g(a+ h)− g(h)
h

=f ′(a) + g′(a)

as desired. By question 2 part e) on your challenge homework, we also have that:

(c · f)′(a) = lim
h→0

(c · f)(a+ h)− (c · f)(h)
h

= lim
h→0

c · f(a+ h)− c · f(h)
h

= lim
h→0

c · f(a+ h)− f(h)
h

=c · f ′(a)

as desired.

We can now begin to tackle polynomials:
Example 2.2. Let f(x) = xn where n is a whole positive number, we want to find f ′. For any h and
any n, we want to know what (x+ h)n. This is a tricky question, but we actually only need to know
what two terms of this expression look like. We have that:

(x+ h)n = (x+ h) · · · (x+ h)︸ ︷︷ ︸
n−times

Ok, so we have to multiply x with itself n times, so we know for a fact that:

(x+ h)n = xn + other stuff

When we expand everything out, every other term will have a factor of h in it. If a term has one h in
it, then it has to be of the form hxn−1, and if we were to expand everything out we have n of them.
Every other term has a factor of h2 or higher in it, hence:

(x+ h)n = xn + nhxn−1 + other stuff divisible by h2

We can thus write the following:

f ′(x) = lim
h→0

(x+ h)n − xn
h

= lim
h→0

xn + nhxn−1 + other stuff divisible by h2 − xn

h

= lim
h→0

nhxn−1 + other stuff divisible by h2 − xn

h

= lim
h→0

nxn−1 + other stuff divisible by h

=nxn−1 + 0

It follows that f ′(x) = nxn−1, as desired.
Example 2.3. With Theorem 2.1 and Example 2.2 we can take the derivative of any polynomial.
Indeed, let:

p(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0
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then:

p′(x) = n · anxn−1 + (n− 1) · an−1x
n−2 + · · ·+ a1 + 0

In Example 2.2 we showed that the derivative of xn is nxn−1 when n is any whole positive number.
It is a fact known as the power rule that this is actually true for any number not equal to zero. We
will not prove this in this course as it requires certain machinery we are not equipped to develop, but
we do etch this rule in stone with the following theorem:
Theorem 2.2. Let f(x) = xa for a any real non zero number. Then f ′(x) = a · xa−1.

We end the section with the following example:
Example 2.4. Let f(x) = ex, then we want to show that f ′(x) = ex as well. This is a fact that is
true only about e, and does not hold for any other number. We will generalize this result to functions
of the form ax where a is any real positive number in the section on the chain rule. Let us begin:

f ′(x) = lim
h→0

ex+h − ex

h

= lim
h→0

exeh − ex

h

= lim
h→0

ex
eh − 1
h

=ex · lim
h→0

eh − 1
h

Where have we seen this limit before? That’s right, in Example 1.14 we showed that this limit was
equal to one! It follows that:

f ′(x) = ex

We give the following table of derivatives. Everything on here is fair game to ask the derivative
of on an exam, so please commit this table to memory. You will spend a significant amount of your
challenge homework checking this table.

Function f(x) Derivative f ′(x) Domain Notes

c 0 All real numbers
xn nxn−1 x 6= 0 if n < 1
ex ex All real numbers
ax ax ln a a > 0, a 6= 1
ln x 1

x x > 0
loga x 1

x ln a x > 0, a > 0, a 6= 1
sin x cosx All real numbers
cosx − sin x All real numbers
tan x sec2 x x 6= π

2 + nπ

arcsin x 1√
1−x2 −1 < x < 1

arccosx −1√
1−x2 −1 < x < 1

arctan x 1
1+x2 All real numbers

sinh x cosh x All real numbers
cosh x sinh x All real numbers

Table 1: Derivatives of common functions

22



2.2 The Product Rule and Quotient Rule
In the previous section, we were able to easily find that the derivative of a sum functions is the sum
of their derivatives, and that the derivative of a real number times a function was that real number
multiplied with that function. Symbolically this is stated as:

d

dx
(f + g) = df

dx
+ dg

dx
and d

dx
(c · f) = c · df

dx

In this section we explore what happens when we try to take derivatives of products and quotients.
One may initially expect that:

(f · g)′ = f ′ · g′

However, if we reason this out for a moment, we will see that this doesn’t quite make sense. Indeed,
we can think of f · g as being the function such that for each a, (f · g)(a) is the area of the rectangle
with side lengths f(a) and g(a):

g(x)

f(x)

Now if h is a number very close to zero, then we can approximate f(a+ h) by f(a) + h · f ′(a), and
similarly for g. It follows that the rectangle with side lengths f(a+ h) and g(a+ h) is given by:

f(a)

h · f ′(a)

g(a) h · g′(a)

Note that the area of the red rectangle is h · f ′(a) · g(a), the area of the blue rectangle is h · g′(a) · f(a),
and the area of the purple rectangle is h2 · f ′(a) · g′(a)¿ Ok, so now what is ∆(f · g) over the interval
[a, a+ h]? Well, we have that when h is small enough:

(f · g)(a+ h) ≈(f(a) + h · f ′(a)) · (g(a) + h · g′(a))
=f(a) · g(a) + h · f ′(a) · g(a) + h · f(a) · g′(a) + h2 · f ′(a) · g′(a)

It follows that:

∆(f · g) = (f · g)(a+ h)− (f · g)(h) ≈ h · f ′(a) · g(a) + h · f(a) · g′(a) + h2 · f ′(a) · g′(a)

and so when we take the limit as h→ 0:

lim
h→0

h · f ′(a) · g(a) + h · f(a) · g′(a) + h2 · f ′(a) · g′(a)
h

= lim
h→0

f ′(a) · g(a) + f(a) · g′(a) + hf ′(a)g′(a)

=f ′(a) · g(a) + f(a) · g′(a)

This informal argument suggests to us that as we shrink h to zero, the h2 · f ′(a)g′(a) part of the
rectangle goes to zero, and the only parts that matter are the h · f ′(a) · g(a) and h · g′(a) · f(a) areas.
This is known as the product rule, and we provide a correct, formal proof of it below:
Theorem 2.3. Suppose that f and g are functions differentiable at a. Then:

(f · g)′(a) = f ′(a) · g(a) + f(a) · g′(a)
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In particular, if f and g are differentiable functions, then:

(f · g)′ = f ′ · g + f · g′

Proof. We have that for all h 6= 0, over the interval [a, a+ h]:11

∆(fg)
∆x =f(a+ h)g(a+ h)− f(a)g(a)

h

=f(a+ h) · g(a+ h) + f(a)g(a+ h)− f(a)g(a+ h) + f(a+ h)g(a)− f(a)g(a)
h

=f(a+ h)g(a+ h)− f(a)g(a+ h)
h

+ f(a)g(ah)− f(a)g(a)
h

=f(a+ h)− f(a)
h

· g(a+ h) + f(a) · g(a+ h)− g(a)
h

Since f and g are differentiable at a, we know that the limits:

lim
h→0

g(a+ h)− g(a)
h

and lim
h→0

f(a+ h)− f(a)
h

exist. Moreover, lim
h→0

g(a+ h) = g(a). It follows by our limit laws, and the definition of the derivative
that:

lim
h→0

f(a+ h)g(a+ h)− f(a)g(a)
h

=
(

lim
h→0

f(a+ h)− f(a)
h

)
· g(a+ h) + f(a) ·

(
lim
h→0

g(a+ h)− g(a)
h

)
=f ′(a) · g(a) + f(a) · g′(a)

as desired.

Here is an example of the product rule in action:
Example 2.5. Let f(x) = sin x and g(x) = cosx, then we want to find the derivative of (f · g)(x) =
sin x · cosx. In other, words we want to find the derivative of:

h(x) = sin x · cosx

With the product rule, and Table 1 we have that:

h′(x) = cosx · cosx− sin x · sin x
= cos2 x− sin2 x

Example 2.6. Let f(x) = ex cosx, then:

f ′(x) = ex · cosx− ex · sin x = ex(cosx− sin x)

If we instead want to take quotients of functions, we need to employ the quotient rule:
Theorem 2.4. Let f and g be differentiable at a with g(a) 6= 0; then the derivative of h = f/g at a
is given by:

h′(a) = g(a) · f ′(a)− f(a) · g′(a)
[g(a)]2

In particular, we have that as functions:

h′ = g · f ′ − f · g′

g2

11Here ∆x = h, and ∆(f · g) = (fg)(a+ h)− (f · g)(a)
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One can prove this using the limit definition of the derivative, but there is a slicker using the chain
rule,12 and the power rule. You will prove the quotient rule on your challenge homework via this
method.

We note that if we think of the derivative of as df/dx, the following mnemonic allows us to easily
remember the chain rule: ‘low d-high minus high d-low all over low squared’.
Example 2.7. Let f(x) = ex and g(x) = x, then:(

f

g

)′
(x) =x · ex − ex · 1

x2

=ex(x− 1)
x2

Example 2.8. Let:

f(x) = x

ln x

We recognize this immediately as a quotient of two functions, namely h(x) = x and g(x) = ln x. Using
Table 1, and the quotient rule we have that:

f ′(x) =
ln x− x · 1

x

(ln x)2 = ln x− 1
(ln x)2

2.3 The Chain Rule and Implicit Differentiation
Given two functions f and g, we have 5 ways of making new functions. We can add them f + g,
subtract them f − g, multiply them f · g, divide them f/g, and compose them f ◦ g.13 We know how
to take derivatives of every single function operation except composition. In this section we explore
how to take such derivatives. We will not be able to provide a proof, but we will attempt to justify
the rule for taking derivatives of composite functions; this rule is known as the chain rule.

We suppose that f and g are functions, with g differentiable at a, and f differentiable at g(a). We
have that for h very close to zero:14

f(g(a+ h)) ≈ f(g(a) + h · g′(a)) ≈ f(g(a)) + h · g′(a) · f ′(g(a))

It follows that:

f(g(a+ h))− f(g(a)) ≈ h · g′(a) · f ′(g(a))

If we believe all this, then the following limit is obvious

lim
h→0

f(g(a+ h))− f(g(a))
h

= lim
h→0

h · f ′(g(a)) · g′(a)
h

= f ′(g(a)) · g′(a)

We enshrine this rule with a theorem:
Theorem 2.5. Let f and g be functions, with g differentiable at a, and f differentiable at g(a), then:

(f ◦ g)′(a) = f ′(g(a)) · g′(a)

On the level of functions:

(f ◦ g)′ = (f ′ ◦ g) · g′
12See next section
13Note that f ◦ g is common notation for the function defined by f(g(x)).
14The following approximations is where we are sweeping all of the hard work under the rug.
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Example 2.9. Consider f(x) = ax, then we can write f(x) as eln a·x, as eln a = a. If g(x) = ex and
h(x) = ln a · x, then f(x) = g(h(x)), and so by the chain rule:

f ′(x) = g′(h(x)) · h′(x) = eln a·x · ln a = ln a · ax

which is our general exponential derivative rule from Table 1.
Example 2.10. Let h(x) = esin x, then we have that h(x) = f(g(x)), where f(x) = ex, and g(x) =
sin x. Taking a derivative of h(x) we have that by the chain rule:

h′(x) = f ′(g(x)) · g′(x)

We know that g′(x) = cosx, and that f ′(x) = ex, then f ′(g(x)) = esin x. It follows that:

h′(x) = esin x · cosx

This specific rule is, in my opinion, best remembered using the fractional notation of the derivative.
Indeed, we have that g′(a) = dg/dx|a, while f ′(g(a)) = df/dx|g(a). If we think of the composition f ◦g
as ’f ◦ g being a function of g’, then we can write df/dx|g(a) as d(f ◦ g)/dg|a, where by d(f ◦ g)/dg we
mean f ′ ◦ g.15 With h = f ◦ g:

dh

dx

∣∣∣
a

= df

dg

∣∣∣
a
· dg
dx

∣∣∣
a

On the level of functions:

dh

dx
= d(f ◦ g)

dg
· dg
dx

Abstractly thinking of one function as a function of another function is hard, so let us come up with
a reasonable example.
Example 2.11. Suppose the amount of vegetation in a meadow measured in kilograms is given by
function of t months:

v(t) = −100 cos
(π

6 t
)

+ 100

where we interpret t = 0 as being the start of January. Note this attempts to depict a realistic picture
for how much vegetation a meadow would have in any given month, peaking in the spring and summer
months:

0 2 4 6 8 10 120

100

200

300

x

y

15This is the function defined by (f ′ ◦ g)(x) = f ′(g(x)).
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Now further suppose that the population of rabbits in the meadow is a function of the available
vegetation:

p(v) = 10 +
(

10001/200
)v

(2.4)

Note this means that when v = 200, the maximum amount of vegetation in the meadow, we will have
a population of 1010 rabbits. We can calculate how the population of rabbits changes with vegetation,
and how the vegetation changes with time; the chain rule says that this is enough to know how the
population changes with time.

We see that:
dp

dv
= 1

200 ln(1000) ·
(

10001/200
)v

while:
dv

dt
= 100 · π

6 · sin
(π

6 t
)

Now since p is a function of v and v is a function of t, we can take a derivative of p with respect to t,
which measures how p changes with respect to t. The chain rule states that this derivative is given by:

dp

dt
=dp

dv
· dv
dt

=
(

1
200 ln(1000) ·

(
10001/200

)v)
·
(

100 · π
6 · sin

(π
6 t
))

= π

12

(
10001/200

)v
· sin

(π
6 t
)

We can replace v with the (2.4) to obtain:

dp

dt
= π

12

(
10001/200

)−100 cos( π
6 t)+100

· sin
(π

6 t
)

Example 2.12. A rocket ships distance from earth is given in kilometers by:

r(t) = ln(t+ 1)

The gravitational force that the Earth exerts on the rocket ship is given as a function of r:

F (r) = k

r2

where k a constant relating the strength of gravity and the masses of the earth and the rocket ship.
Using the chain rule, we can find out the force the Earth exerts on the rocket ship changes with time.
Indeed, we have that:

dF

dr
= −2k

r3

while:
dr

dt
= 1
t+ 1

It follows that:
dF

dt
=dF

dr
· dr
dt

=− 2k
r3 ·

1
t+ 1

=− 2k
(ln(t+ 1))3 ·

1
t+ 1
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A particularly apt application of the chain rule is something called implicit differentiation. We
explain this as follows: if we have a function f(x), then when we graph a function we set the y
coordinate equal to f(x). In particular, this motivates using df/dx and dy/dx interchangeably to refer
to the derivative, . However, sometimes we care about graphs that aren’t quite functions, but instead
a relation between x and y, i.e. instead of y = f(x), we have something like xy = 1, or x2 + y2 = 1.
We want to be able to calculate the tangent line to curves in the plane of this form. We demonstrate
this via example:
Example 2.13. Suppose that we have the following curve:

x2 + y2 = 1 (2.5)

The set of points in the plain (x, y) which satisfy this relation forms a circle:

−2 −1 0 1 2
−2

−1

0

1

2

Suppose we want to find the slope of the tangent line at (
√

2/2,
√

2/2). Note that this is point lies on
the circle as: (√

2
2

)2

+
(√

2
2

)2

= 2 + 2
4 = 1

Well we simply take the derivative of both sides of (2.5)! We know that:

d

dx
(1) = 0 and d

dx
x2 = 2x

but what about y2? Well, we treat y as if were a function of x, and apply the chain rule to get:

d

dx
(y2) = 2y · dy

dx

Putting it all together we obtain that:

2x+ 2y · dy
dx

= 0

Now we can plug in x =
√

2/2 and y =
√

2/2 to solve for dy/dx:
√

2 +
√

2 · dy
dx

= 0⇒
√

2 · dy
dx

= −
√

2⇒ dy

dx
= −1

It follows that our tangent line l(x) is given by:

l(x) = −1(x−
√

2/2) +
√

2/2
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We graph this to make sure:

−2 −1 0 1 2
−2

−1

0

1

2

In particular, we can write dy/dx as the following function of both x and y:
dy

dx
= −x

y

Example 2.14. Now suppose we want to differentiate the function:

y3 − x sin y = 8

Then we have that by the chain rule:
d

dx
y3 = 3y2 · dy

dx

and by the product rule:
d

dx
(x sin y) = sin y + x cos y dy

dx

hence:

3y2 · dy
dx
− sin y + x cos y dy

dx
= 0

We move all the terms that contain dy/dx to one side to get:

3y2 · dy
dx

+ x cos y dy
dx

= − sin y

We can then factor out dy/dx from each term to obtain that:
dy

dx
= − sin y

3y2 + x cos y
Note it is not always possible to write this solely as a function of x.

2.4 Inverse Function Theorem
let f be a function, then we say that f has an inverse, denoted f−1 if:

f(f−1(x)) = f−1(f(x)) = x

Importantly, if such an inverse exists, then the graph of f−1 is the graph of f flipped over the line
y = x in the plane. The domain of the inverse function, is always the range of the original function,
but the range is not always the domain. We will see an example of this shortly.
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Example 2.15. If f(x) = 2x, then it’s inverse is log2(x) essentially by definition. This actually true
of any function of the form ax, i.e. loga x is it’s inverse. We can see this because for all x:

2log2 x = x and log2 2x = x

We graph these functions to demonstrate the flipping:

−3 −2 −1 0 1 2 3 4

−2

0

2

4

The blue plot is 2x, and the magenta curve is log2 x. The black line is y = x.
Example 2.16. The trigonometric functions sin, cos and tan have inverse functions given by arcsin,
arccos and arctan. These are sometimes also referred to by sin−1, cos−1, and tan−1. Note that domain
of sin−1 and cos−1 is [−1, 1], but the range is only [−π/2, π/2] for sin−1 and [0, π] for cos−1. This is
because if we reflect cosx (or sin x) over the line y = x we get the following picture:

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

The magenta is our supposed inverse, but this clearly would not function the vertical line test, i.e. it
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would have many outputs. If instead we restrict our range to [0, π], we get:

−1 −0.5 0 0.5 10

1

2

3

which does pass the vertical line test. I suggest you map out sin x and sin−1 x in a similar fashion on
Desmos. We graph the situation for tan x and tan−1 x here as well, as tan−1 x is defined everywhere:

−4 −2 0 2 4
−2

−1

0

1

2

which looks as expected.
Example 2.17. Another important example is every linear function. Indeed, suppose that:

f(x) = mx+ b

then we claim that:

f−1(x) = 1
m

(x− b)

Indeed:

f(f−1(x)) =f
(

1
m

(x− b)
)

=m · 1
m

(x− b) + b

=x− b+ b

= x
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similarly:

f−1(f(x)) =f−1(mx+ b)

= 1
m

(mx+ b− b)

= 1
m
mx

=x

Now how can we take derivatives of inverse functions? Given that the graph of an inverse function
is the graph of the original function just flipped over the line y = x, it appears that the inverse should
be differentiable since it looks like we can draw it smoothly, but what exactly is the derivative?
Theorem 2.6. Suppose that f is a differentiable function, and f ′(a) 6= 0. Then if there exists an
inverse function f−1, the derivative at x = f(a) is given by:

f−1′(f(a)) = 1
f ′(a)

Proof. Since the graph of f−1 is smooth, we assume that it is differentiable. Now we have that:

f−1(f(x)) = x

The derivative of x is one, hence:
d

dx

(
f−1(f(x))

)
= 1

The chain rule tells us that the left hand side is given by:
d

dx

(
f−1(f(x))

)
= f−1′(f(x)) · f ′(x)

At x = a this becomes:

f−1′(f(a)) · f ′(a) = 1⇒ f−1′(f(a)) = 1
f ′(a)

as desired.

We immediately have the following example:
Example 2.18. We want to know what the derivative of ln x at x = a is. Well, if a > 0, which is
the only place that ln x is defined, we can write a as eln a. Now set b = ln a, then we have that by the
inverse function theorem: (

d

dx
ln
)

(eb) = 1
eb

because the derivative of ex is ex. Putting in ln a for b, we get that:(
d

dx
ln
)

(a) = 1
a

as eln a = a. It follows that:
d

dx
ln x = 1

x

Now what about logc x for some real number c > 0? Well:

logc x = ln x
ln c

so taking a derivative gives us:
d

dx
logc x = 1

x · ln c
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Example 2.19. Let us derive the formula for the derivative of arcsin x as well. If −1 < a < 1, we
have that we can write a as sin θ for some θ in the interval (−π/2, π/2). It follows that:(

d

dx
arcsin

)
(sin θ) = 1

cos(θ)

We need to figure out what cos(θ) is. Consider the following diagram:

cos θ

sin θ1

θ

Now since sin θ = a, and:

sin2 θ + cos2 θ = 1 (2.6)

we must have that:

cos θ =
√

1− sin2 θ =
√

1− a2

hence: (
d

dx
arcsin

)
(a) = 1√

1− a2

Since this holds for all a we have that:
d

dx
arcsin x = 1√

1− x2

Example 2.20. We want to derive the formula of the derivative of arccosx. If −1 < a < 1 we have
that we can write a as cos θ for some θ in the interval (−π, π). The inverse function theorem gives us:(

d

dx
arccos

)
(cos θ) = 1

− sin θ

Now what is − sin θ? By the same argument as in the previous example, we have that:

sin2 θ + cos2 θ = 1

hence:

sin θ =
√

1− cos2 θ =
√

1− a2

it follows that:

− sin θ = −
√

1− a2

Therefore: (
d

dx
arccos

)
(a) = −1√

1− a2

Since this holds for all −1 < a < 1:
d

dx
arccosx = −1√

1− a2
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Example 2.21. Finally, we want to derive a formula for arctan x. For any x we can write it as tan θ
for some θ in the interval (−π/2, π/2). We can thus write:(

d

dx
arctan

)
(tan θ) = 1

sec2 θ

Now, dividing equation (2.6) by cos2 θ gives us:

tan2 θ + 1 = sec2 θ

hence we have that sec2 θ = 1 + a2 as a = tan θ. It follows that:(
d

dx
arctan

)
(a) = 1

1 + a2

Since this holds for all real numbers a, we have that:

d

dx
arctan x = 1

1 + a2

Week III: Examples
3.1 Examples: Product Rule, Quotient Rule, Chain Rule
Example 3.1. In this example we go over how to calculate the derivative of:

f(x) = ex

tan x
Since f is a quotient of two functions, we should use the quotient rule. We know that:

d

dx
ex = ex and d

dx
tan x = sec2 x

hence the quotient rule tells us that:

df

dx
=

tan x d
dxe

x − ex d
dx tan x

tan2 x

=ex tan x− ex sec2 x

tan2 x

Example 3.2. What if we want to find the tangent line to:

f(x) = ex

tan x
at x = π/4? Well the derivative tells us the slope of the tangent line at any point, and we know
that the tangent line has to pass through the point (π/4, f(π/4)) so point slope form tells us that the
tangent line should be given by:

y − f(π/4) = df

dx
(π/4)(x− π/4)

We just need to find f(π/4) and (df/dx)(π/4). Note that tan π/4 = sin(π/4)/ cos(π/4) = 1. It follows
that:

f(π/4) = eπ/4

which we can’t simplify any further. Now:

sec2(π/4) = 1
cos2(π/4) = 1

(
√

2/2)2
= 1

1/2 = 2
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so:

df

dx
(π/4) = eπ/4 − 2eπ/4

1 = −eπ/4

so our line is given by:

y − eπ/4 = −eπ/4(x− π/4)

Example 3.3. What if we want to find the tangent line to:

g(x) = cosx · sin x

at x = π/2? Well we need to find dg/dx first; in this case we should use the product rule because g(x)
is a product of two functions. The product rule tells us that:

dg

dx
= d

dx
(cosx) sin x+ cosx · d

dx
(sin x)

=− sin2 x+ cos2 x

Plugging in π/2 we have that:

dg

dx
(π/2) =− sin2(π/2) + cos2(π/2)

=− 1 · 1 + 0
=− 1

Meanwhile g(π/2) = 0 because cos(π/2) = 0. It follows that our line is given by:

y = −(x− π/2)

Example 3.4. What if we are given two functions:

f(x) = sin x and g(x) = ln x

then we can get new functions:

h(x) = f(g(x)) = f(ln x) = sin(ln x) and l(x) = g(f(x)) = g(sin x) = ln(sin x)

Lets find tangent lines to the functions h(x) and l(x) at x = eπ/4, and x = π/4 respectively. The the
chain rule tells us that:

dh

dx
= df(g)

dx
= df(g)

dg
· dg
dx

Replacing this functions, we obtain that:

d

dx
(sin(ln x)) = d sin(ln x)

d ln x · d ln x
dx

Here the notation d sin(ln x)/d ln x, just means take the derivative of sin ln x, while pretending that
ln x is the variable. It might help to think of ln x as being equal to y, then d sin(ln x)/d ln x is just
d sin(y)/dy which is cos y. Plugging ln x back in for for y tells us that:

d sin(ln x)
d ln x = cos(ln x)

It follows that:
d

dx
(sin(ln x)) = cos(ln x) 1

x
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Plugging in eπ/4 we get:

dh

dx
(eπ/4) = cos

(
ln
(
eπ/4

))
· 1
eπ/4

= cos(π/4) · 1
eπ/4

=
√

2
2eπ/4

Now since:

h(eπ/4) = sin(π/4) =
√

2
2

it follows that the tangent line is given by:

y −
√

2
2 =

√
2

2eπ/4 (x− eπ/4)

For l(x), we take the derivative the same way:

dl

dx
= d ln(sin x)

dx
=d ln(sin x)

d sin x · d sin x
dx

= 1
sin x · cosx

= cotx

Plugging in π/4 we have that:

dl

dx
(π/4) = cot(π/4) = 1

while:

l(π/4) = ln
(√

2/2
)

so our tangent line is:

y − ln
(√

2/2
)

= x− π/4

Example 3.5. What if we have a function that is a composition of three functions? I.e.

h(x) = ln x g(x) = sin x f(x) = ex

then set:

l(x) = h(g(f(x))) = h(g(ex)) = h(sin(ex)) = ln(sin(ex))

How do we take the derivative of l(x)? Well the chain rule says that:

dl

dx
= d ln(sin(ex))

d sin(ex) · d sin(ex)
dx

We know the derivative of ln(y) with respect to y, it is just:

d ln(y)
dy

= 1
y
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Therefore:
d ln(sin(ex))
d sin(ex) = 1

sin(ex)

But what about d(sin(ex))/dx? Well we just apply chain rule again! Indeed, by the chain rule:

d sin(ex)
dx

=d sin(ex)
dex

· de
x

dx
= cos(ex) · ex

It follows that:
dl

dx
=d ln(sin(ex))

d sin(ex) · d sin(ex)
dex

· de
x

dx

= 1
sin(ex) · cos(ex) · ex

In general we have that:
dl

dx
=dh(g(f))

dx

=dh(g(f))
dg(f) · dg(f)

dx

=dh(g(f))
dg(f) · dg(f)

df
· df
dx

In other words, we just keep applying the chain rule until we get something at the end that we can
make sense of, i.e. we hit product rule, or quotient rule, or a basic derivative.

3.2 Examples: More Chain Rule, Implicit Differentiation
Example 3.6. Let us consider f(x) = ln(tan x), we want to find it’s derivative. We should use the
chain rule:

df

dx
=d ln(tan x)

d tan x · d tan x
x

= 1
tan x · sec2 x

= 1
sin
cos

1
cos2

= 1
sin x cosx

= secx cscx

Or you can just leave this as:

df

dx
= sec2

tan x

Example 3.7. Let us find the tangent line to:

g(x) = ecos x

at x = π/4. Let’s take a derivative (using the chain rule!):
dg

dx
=decos x

d cosx ·
d cosx
dx

=ecos x · (− sin x)
=− ecos x sin x
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Since the derivative gives us the slope of the tangent line, we have that our slope is:

df

dx
(π/4) =− ecos(π/4) sin(π/4)

=− e
√

2/2(
√

2/2)

=−
√

2
2 e
√

2/2

while:

g(π/4) = e
√

2/2

hence the tangent line is given by:

y − e
√

2/2 = −
√

2
2 e
√

2/2(x− π/4)

Example 3.8. Sometimes, we are not given a function to graph, but instead an equation:

xy + y2 = 2

The graph of this equation is all the points (x, y) in the plane that satisfy the above relation. This is
given by:

Clearly, there are tangent lines to this graph because everything looks smooth, but how do we find
them? The trick to pretend that y is a function of x, (i.e. y = f(x)), then dy/dx will give us the slope
of the tangent line at a point. Taking a derivative of both sides gives:

d

dx
(xy + y2) = d

dx
2

Note that d/dx(2) is zero because 2 is a constant. The derivative distributes over sums:

d

dx
(xy) + d

dx
(y2) = 0

The product rule tells us that:

d

dx
(xy) = dx

dx
y + x

d

yx
= 1 + x

dy

dx
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We can’t reduce dy/dx to anything simpler because that’s what we are trying to solve for! For the
other term, the chain rule tells us that:

dy2

dx
=dy2

dy
· dy
x

=2y · dy
dx

It follows that:

1 + x
dy

dx
+ 2y · dy

dx
= 0

To solve for dy/dx, we move the 1 to the other side:

x
dy

dx
+ 2y · dy

dx
= −1

Factor out dy/dx to get:

(x+ 2y)dy
dx

= −1

We divide by (x+ 2y) to find that:

dy

dx
= −1
x+ 2y

Now consider the point (1, 1), this on the graph of the equation because 1 · 1 + 12 = 2. The slope of
the tangent line is then given by plugging x = 1 y = 1 into dy/dx:

dy

dx
(1, 1) = −1

1 + 2 = −−1
3

The tangent line is then given by:

y − 1 = −1
3(x− 1)

Graphing this we get:

Example 3.9. We want to do the same thing as in the previous example for the following equation:

exy = x+ y
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i.e. we want to find dy/dx for the above equation. We begin by taking d/dx of both sides:
d

dx
(exy) = d

dx
(x+ y)

The right hand side is easy, it just evaluates to:
d

dx
(x+ y) = 1 + dy

dx

The left hand side is a hair more complicated. Using the chain rule and the product rule:
d

dx
(exy) =dexy

dx

= dexy

d(xy) ·
d(xy)
dx

=exy · (dx
dx

+ x · dy
dx

)

=exy · (1 + x
dy

dx
)

=exy + xexy
dy

dx

It follows that:

exy + xexy
dy

dx
= 1 + dy

dx

We subtract dy/dx and exy from both sides to get:

xexy
dy

dx
− dy

dx
= 1− exy

Pull out dy/dx to get:

(xexy − 1)dy
dx

= 1− exy

hence:
dy

dx
= 1− exy
xexy − 1

Example 3.10. Let us now consider the equation:

ln(cos(ey)) = xy

We want to find dy/dx using implicit differentiation. We take the derivative of both sides; the right
hand side gives by the product rule:

d

dx
(xy) = y + x

dy

dx

The left hand side requires applying the chain rule multiple times:
d

dx
(ln(cos(ey)) =d ln(cos(ey))

d cos(ey) · d cos(ey)
dx

=d ln(cos(ey))
d cos(ey) · d cos(ey)

dey
· de

y

dx

=d ln(cos(ey))
d cos(ey) · d cos(ey)

dey
· de

y

dy
· dy
dx

= 1
cos ey · (− sin(ey)) · ey · dy

dx

=− tan(ey) · ey · dy
dx
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Equating the left hand side and the right hand side:

− tan(ey) · ey · dy
dx

= y + x
dy

dx

Moving all dy/dx terms to the left hand side, and multiplying throughout by −1 we obtain:

tan(ey) · ey · dy
dx

+ x
dy

dx
= −y

Pulling out dy/dx:

(tan(ey) · ey + x)dy
dx

=− y

dy

dx
= −y

tan(ey) · ey + x

3.3 Examples: Physical Chain Rule and Logarithmic Differentiation
Example 3.11. The gravitational pull of the Earth on a rocket ship is given by:

F (r) = k

r2

where r is the distance between the Earth and the rocket ship in kilometers, and F (r) is in Newtons.
The distance of the rocket ship from earth in kilometers is given as a function of time:

r(t) = ln(t+ 1)

where t has units seconds. We want to know how the gravitational pull of Earth on the rocket ship is
changing with time, and to do that we need to find the derivative of F with respect to time t. The
chain rule states that we have:

dF

dt
= dF

dr
· dr
dt

Note that dF/dr has units newtons per kilometer, and dr/dt has units kilometers per second, so their
product has units Newtons per second, so the chain rule makes physical sense here.

To actually calculate, we see that:

dF

dr
= d

dr
(kr−2)

so the power rule tells us that:

dF

dr
− 2kr−3 = −2k

r3

while:

dr

dt
=d ln(t+ 1)

d(t+ 1) ·
d(t+ 1)
dt

= 1
t+ 1 · 1

= 1
t+ 1

Multiplying the two together, we get that:

dF

dt
=−2k

r3 ·
1

t+ 1
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Since r(t) = ln(t+ 1) we have:

dF

dt
= −2k

(ln(t+ 1))3 ·
1

t+ 1

Physically, at t = e − 1 seconds, we have that the rocket ship is 1 km from the earth, and moving
at a speed of 1/e kilometers per second. At 1 km, the gravity the Earth exerts on the rocket ship is
changing at a rate of −2k Newtons per kilometer. It follows that at t = e − 1, the gravity the Earth
exerts on the rocket ship is changing at a rate of −2k/e Newtons per second.
Example 3.12. We want to find the tangent line to:

f(x) = cos
(
x2)

at x =
√
π/4. We take a derivative and use the chain rule and power rule:

df

dx
=
d cos

(
x2)

dx2 · dx
2

dx

=− 2x sin
(
x2)

The slope of our tangent line is thus:

df

dx
(
√
π/4) = −2(

√
π/4) · · · sin(π/4)

=− 2
√
π

2 ·
√

2
2

=−
√

2π
2

while:

f(π/4) =
√

2/2

so the tangent line is given by:

y −
√

2
2 = −

√
2π
2 (x−

√
π/4)

Example 3.13. Suppose that:

h(x) = 4f(x) + g(x)
2

then the derivative rules tell us that:
dh

dx
= d

dx

(
4f(x) + g(x)

2

)
=4 · df

dx
+ 1

2
dg

dx

Example 3.14. In the next two examples we explore logarithmic differentiation. Consider the follow-
ing function:

f(x) = xx

How do we take it’s derivative? Well we can’t apply the power rule, as it is not actually a polynomial
because the exponent isn’t a constant, and we can’t apply the exponential rule because the base isn’t
constant. What we can do though, is let y = f(x), and use implicit differentiation. Indeed, if we have:

y = xx
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and we take the natural log of both sides, we obtain that:

ln y = ln(xx)
=x · ln x

Taking a derivative of both sides, we obtain:
1
y
· dy
dx

= ln(x) + 1

Multiplying throughout by y, we have that:
dy

dx
= y · (ln(x) + 1)

but y = xx, hence:
d

dx
(xx) = xx · (ln(x) + 1)

Example 3.15. We can also use logarithmic differentiation to avoid using the quotient rule. Indeed,
consider:

f(x) =(x2 + 1)5 ·
√

sin x
(x7 − 4)2

If we let y = f(x) and then take the natural log both sides again, we get using the log rules:

ln y = ln
(

(x2 + 1)5 ·
√

sin x
(x7 − 4)2

)
= ln

(
(x2 + 1)5 ·

√
sin x

)
− ln

(
(x7 − 4)2)

= ln
(
(x2 + 1)5)+ ln

(√
sin x

)
− 2 ln

(
x7 − 4

)
=5 ln

(
x2 + 1

)
+ 1

2 ln(sin x)− 2 ln
(
x7 − 4

)
Taking the derivative of both sides we get using the chain rule:

1
y

dy

dx
= 5 · 2x
x2 + 1 + cosx

2 sin x −
2 · 6x5

x7 − 4

Multiplying both sides by y, and using that y = f(x) we get that:

dy

dx
=
(

(x2 + 1)5 ·
√

sin x
(x7 − 4)2

)
·
(

5 · 2x
x2 + 1 + cosx

2 sin x −
2 · 6x5

x7 − 4

)
which is a very complicated expression, but was not that difficult to obtain.

3.4 Examples: More Physical Chain Rule and Implicit Differentiation
Example 3.16. We want to find the tangent line to:

ecos(xy) = 1

at (
√
π/
√

2,
√
π/
√

2). We take a derivative of both sides, and note that the derivative of the right hand
side is obviously zero. For the right hand side we use the chain rule:

decos(xy)

dx
= decos(xy)

d cos(xy) ·
d cos(xy)
dxy

· dxy
dx

=ecos(xy)(− sin(xy))(y + x
dy

dx
)
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Equating the left hand side (the above) and the right hand side (which is zero), we get:

ecos(xy)(− sin(xy))(y + x
dy

dx
) = 0

Since at (
√
π/
√

2,
√
π/
√

2), we know that ecos(xy)(− sin(xy)) is non zero, we can divide both sides by
it to get:

y + x
dy

dx
= 0

hence:

dy

dx
= −y

x

so at (
√
π/
√

2,
√
π/
√

2) we have:

dy

dx
(
√
π/
√

2,
√
π/
√

2) = −1

The tangent line is thus:

y −
√
π√
2

= −
(
x−
√
π√
2

)
Example 3.17. The force a proton exerts on an electron is given by:

F (r) = −k
r2

where k is some constant, F (r) is in Newtons, and r is in meters representing the distance between
the electron and proton. The distance between the electron and proton is given by the function:

r(t) = 2 + cos(π · t)

We have that by the power rule:

dF

dr
= 2k
r3

and that by the chain rule:

dr

dt
= −π · sin(πt)

At t = 1, we have that:

dr

dt
(1) = −π · sin(π) = 0

hence at t = 1:

dF

dt
(1) = dF

dr
(r(1)) · dr

dt
(1) = 0

Hence at t = 1 seconds we have that force the proton exerts on the electron is zero.
Example 3.18. The volume of a snowball is given by:

S(r) = 4πr3

3
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where r is it’s radius in meters. We have that:

r(t) = 1
(t+ 1)2 −

1
12

Taking a derivative of the volume with respect to time, we get that:

dS

dt
=dS

dr
· dr
dt

=− 8πr2 · 1
(t+ 1)3

We want to know how quickly the volume is decreasing at t = 1 second. We know that:

r(1) = 1
(1 + 1)2 −

1
12

=1
4 −

1
12

=1
6

So:
dS

dt
(1) =− 8π(1/6)2 · 1

23

=− π

36

Example 3.19. In this example we solve problem 296 in the textbook. In particular, we have that
a building casts a shadow of length x as the sun moves throughout the sky. We have the following
diagram:

We want to find dθ/dx when x = 272ft. We know that

tan θ = 225
x

hence we can apply take a derivative with respect to both sides to find that:

sec2 θ · dθ
dx

= −225
x2

hence:
dθ

dx
= −225
x2 · sec2 θ

We need to know what sec2 θ is. Note that the hypotenuse of this triangle is:√
x2 + 2252
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so:

cos θ = x√
x2 + 2252

so:

cos2 θ = x2

x2 + 2252

hence:

sec2 θ = x2 + 2252

x2

Plugging this into our formula for dθ/dx yields:

dθ

dx
= −225
x2 + 2252

plugging in x = 227 we obtain: that:

dθ

dx
≈ .002

We could alternatively say that:

θ = arctan
(

225
x

)
hence:

dθ

dx
= 1

1 + (225/x)2 ·
(
−225
x2

)
which gives the same answer when x = 227.
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