
Calculus I
Challenge Homework Set I

May 16, 2025

Provide handwritten answers on a separate sheet of paper. Typed answers will not be accepted.
For full credit correct answers should be clear, legible, include explanations for your reasoning, and
show all relevant work. You are allowed to make use of outside resources, including the internet, and
friends, but you must cite your sources. Textbook Problems:

Ch 4: 113-128, 316, 322, 338-340

i) Find the critical points of the following functions, and evaluate whether the critical points are
maxima or minima.

a) cos(2x)

b) sin(5x)

c) sin(|x|)

d) | cosx|

For a), we have that:

d cos(2x)
x

= −2 sin(2x)

This is zero precisely when 2x = nπ where n is some integer. In other words, our critical points
are of the form nπ/2. If n is even, we have that n = 2m for some other integer m; in particular,
we have that x = mπ. We choose a value of x slightly greater than mπ, say mπ+ .1 then we get:

−2 sin(2mπ + .2)

which is negative as sin(2mπ + .2) is positive sin 2mπ + .2 lies in the following area on the unit
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circle:

2mπ

Similarly, if we chose a value of x slightly less than mπ, say mπ−.1 wend up with − sin(2mπ − .2).
Since this angle ends up below the x-axis we have that − sin(2mπ − .2) is positive, and so nπ/2
is a local maximum when n is even.

If n is odd, we have that n = 2m+ 1, hence x = (2m+ 1)π/2 = mπ+ π/2. If we chose a value of
x which is slightly larger than mπ + π/2, say mπ + π/2 + .1, then we get:

−2 sin(2mπ + π + .2)

We see that 2mπ + π + .2 lies in the following area on the unit circle:

(2m+ 1)π

In particular, 2mπ + π + .2 gives us an angle below the x axis, and so −2 sin(2mπ + π + .2) is
positive. Similarly, we have that −2 sin(2mπ + π − .2) is negative, hence when n is odd we have
that nπ/2 is a local minimum. We thus conclude that the minimums occur when n is odd, and
the maximums occur when n is even.

For b), we have that:

d sin(5x)
dx

= 5 cos(5x)

This is zero when cos(5x) = 0, which implies that 5x = nπ+π/2 for every integer n. Our critical
points are then of the form:

x = nπ

5 + π

10
If n is even, then we have that n = 2m for some integer m, hence:

x = 2mπ
5 + π

10
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If we choose a number slightly larger than the above, say:

a = 2mπ
5 + π

10 + .1

then:

5a = 2mπ + π

2 + .5

which lies in the following area of the unit circle:

2mπ + π

2

It follows that:

cos
(

2mπ + π

2 + .5
)
< 0

as 2mπ + π
2 + .5 lies to the left of the y-axis. Similarly, if we choose a number slightly less than

x say:

b = 2mπ
5 + π

10 − .1

then same argument demonstrates that cos(5b) > 0 hence nπ/5 + π/10 is a local maximum when
n is even.

Suppose that n is odd then:

x = (2m+ 1)π
5 + π

10

If we choose a number greater than x say:

a = (2m+ 1)π
5 + π

10 + .1

then:

5a = (2m+ 1)π + π

2 + .5
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lays in the following area of the unit circle:

2mπ + 3π
2

It follows that cos(5a) > 0, and if we set:

b = (2m+ 1)π
5 + π

10 − .1

then:

5b = (2m+ 1)π + π

2 − .5

so cos(5b) < 0. It follows that if n is odd then nπ/5 + π/10 is a local minimum.

For c), we have that since sin x is odd:

sin |x| =
{
− sin x for x < 0
sin x for x ≥ 0

Taking a derivative we have that:

d sin |x|
dx

=
{
− cosx for x < 0
cosx for x > 0

Note that since − cos(0) = −1 6= 1 = cos(0) we have that 0 is a critical point as the derivative
can’t exist there. Moreover, we know that 0 is a local minimum as at 0, we have that d sin |x|/dx
goes from negative to positive.

For x > 0, we have that critical points are x = nπ + π/2 where m is a positive integer. By
Example 6.10, we know that here the critical points are local maximums when n is even, and
local minimums when n is odd.

For x < 0, we have that critical points are also of the form nπ+π/2 where this time m is a negative
integer. Here we deduce that the critical points are the opposite as to the case of Example 6.10
as when x is less than zero, we are finding the local minima and maxima of − cosx. In other
words, since we are multiplying by negative, local minima become local maxima and vice versa.
It follows that for x < 0 the critical points are local maxima when n is odd, and local minima
when n is even.

For d), we have that:

| cosx| =
{
− cosx for cosx < 0
cosx for cosx > 0
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But when is cosx less than zero, and when is it greater than zero? Well examining the unit circle,
we see that:

π 0

π

2

3π
2

so we have that cosx > 0 when 2nπ − π/2 ≤ x ≤ 2nπ + π/2, and cosx < 0 when 2nπ + π/2 ≤
x ≤ 2nπ − π/2. It follows that:

| cosx| =
{

cosx for 2nπ − π/2 ≤ x ≤ 2nπ + π/2
− cosx for 2nπ + π/2 ≤ x ≤ 2nπ − π/2

Taking a derivative, we obtain that:

d| cosx|
dx

=
{
− sin x for 2nπ − π/2 < x < 2nπ + π/2
sin x for 2nπ + π/2 < x < (2n+ 1)π − π/2

Note that for all n 2nπ − π/2 and 2nπ + π/2, sin x and − sin x differ by a minus sign so the
derivative at 2nπ − π/2 and 2nπ + π/2 does not exist for all integers n. It follows that for all
n the points 2nπ − π/2 and 2nπ + π/2 are critical points. Our other critical points occur when
sin x = 0 or − sin x = 0, which are when x = mπ for an integer m.

For critical points of the form 2nπ − π/2, we are on the in the following area of the unit circle:

2nπ − π

2

hence for a < 2nπ − π/2, we have that sin(a) is negative, and when a > 2nπ − π/2 we have that
− sin(a) is positive so 2nπ − π/2 is a local minimum. Similarly for 2nπ + π/2 we are at the top
of the unit circle, so for a < 2nπ + π/2 we have that − sin(a) is negative, and for a > 2nπ + π/2
sin(a) is positive, implying that 2nπ + π/2 is also a local minimum.

When m is odd we have that x = (2l+ 1)π which lies in the interval [2lπ+ π/2, (2l+ 1)π− π/2].
In this interval we are looking at the extrema − cosx, and since m is odd we have that this is a
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local maximum by the argument in part c). When m is even, we have that x = 2lπ, which lies in
the interval [2lπ − π/2, 2lπ + π/2] which means we are looking at the local extrema of cosx. By
Example 6.10 in the notes, we have that here x is a local maximum as well.

It follows that local maximums occurs when x = nπ for every integer n, and local minimums
occur when x = 2nπ ± π/2 for every integer n.

ii) In this problem we consider optimizing the volume or surface area of certain shapes. Hint: Draw
pictures!

a) Find the largest volume of a cylinder that fits into a cone of radius r and height h.

b) Find the dimensions of a cylinder with volume 16πm2 that has the least surface area.

c) Find the dimensions of a right cone with surface area 4πm2 that has the largest volume.

d) Suppose that total surface area of a cube and and sphere is 1 m3. Find the dimensions of
the cube and sphere such that the total volume is maximized.

For a), we let the radius of the cylinder be R and its height H. We have that a cylinder sitting
inside the cone cuts out a cone of height h − H and radius equal to R. By exploiting similar
triangle we obtain the following relation:

R

h−H
= r

h

Solving for H we obtain that:

H = (r −R)h
r

It follows that the volume of our cylinder is:

V = πh

r
R2 · (r −R) = πh

r
(rR2 −R3)

Taking a derivative:
dV

dr
= πh

r
(2rR− 3R2)

Setting this equal to zero gives the following equation:

2rR− 3R2 = 0

which implies that either R = 0 or R = 2r/3. Clearly R = 0 can’t be a maximum, and if R < 2r/3
then V (R) > 0, while if R > 2r/3 we have that V (R) < 0, hence 2r/3 is a local maximum. This
is the only critical point which is not an endpoint on the interval [0, r], hence 2r/3 is a global
maximum. Plugging 2r/3 into the volume function we get that the maximum volume is:

V = 4πr2h

27

For b) we have that if a cylinder has a volume of 16π, then:

πr2h = 16π ⇒ h = 16
r2
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The surface area is given by:

S = 2πrh+ 2πr2 = 32π
r

+ 2πr2

Taking a derivative we get that:

dS

dr
= −32π

r2 + 4πr

Setting this equal to zero is the same as solving:

32π
r2 = 4πr ⇒ 4r3 = 32⇒ r3 = 8⇒ r = 2 m

This is a local minimum as if r is less than 2 then dS/dr is less than zero, and if r is greater than
2 then dS/d is greater than zero. Since r = 2 is the only critical it follows that r = 2 must be a
global minimum. Since r = 2 implies h = 4, we have that these are dimensions which minimize
the volume when surface area is 16π.

For c), if l =
√
r2 + h2, then the surface area of a cone is given by:

πr
√
r2 + h2 + πr2 = 4π

implying that:

r
√
r2 + h2 + r2 = 4⇒ r

√
r2 + h2 = 4− r2

Squaring both sides gives:

r2(r2 + h2) = (4− r2)2

hence:

r2 + h2 = (4− r2)2

r2 ⇒ h =

√
(4− r2)2

r2 − r2

Note that:

(4− r2)2

r2 − r2 = (4− r2)2 − r4

r2 = 16− 8r2

r2

hence:

h =
√

16
r2 − 8

The volume function is given by:

V = πr2
√

16
r2 − 8 = 2π

√
4r2 − 2r4

This is maximized when 4r2 − 2r4 is maximized, and this had derivative:

8r − 8r3

hence r = 0, 1 are critical points. When r is less than 1 but greater than zero, we have that
8r− r3 is positive, and for r greater than 1 we have that 8r− r3 is negative. It follows that r = 1
is a local maximum, and is in fact a global maximum on the interval [0, 1], hence the cone has
the highest volume when r = 1, which also forces h = 2

√
2 as well.
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For d), we have that the surface area of a cube of side length s is 6s2, while the surface area of
the sphere is 4πr2. The volumes are s3, and 4/3πr3 respectively. If:

4πr2 + 6s2 = 1

we have that:

r2 = 1− 6s2

4π

hence:

r3 = (1− 6s2)3/2

8π
√
π

so our volume can be written as a function of s:

V = s3 + (1− 6s2)3/2

6
√
π

Taking a derivative, we get:

dV

ds
=3s2 + 1

6
√
π
·
(3

2(1− 6s2)1/2 · (−12s)
)

=3s2 − 3s
√

1− 6s2
√
π

Finding critical points is then the same as solving:

3s2 = 3s
√

1− 6s2
√
π

Clearly s = 0 is a critical point, but what are the others? Assuming s 6= 0, we can divide by s
and find that:

s =
√

1− 6s2
√
π

squaring both sides yields:

πs2 = 1− 6s2 ⇒ (π + 6)s2 = 1⇒ s = 1√
π + 6

Our interval is [0, 1/
√

6] as those are the allowed values of s. By comparing values, (either using
a calculator or otherwise), one easily sees that s = 0 is our maximum value. When s = 0, the
radius 1/

√
4π, and these dimensions maximize volume.

iii) For this problem recall that (x1, y1) and (x2, y2) are two points in the plane, then the distance
between them is given by:

d =
√

(x1 − x2)2 + (y1 − y2)2

Using this, answer the following questions:

• Where is the line y = 5− 2x closest to the origin?
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• Where is the parabola y = x2 closest to the point (2, 0)?

• Where is the cubic y = x3 closest to the point (2, 2)?

Note that in all of these it suffices to maximize d2 instead of x.

For a), we have that:

d2 = (x− 0)2 + (y − 0)2 = x2 + (5− 2x)2

Taking a derivative we get:

dd2

dx
= 2x− 2 · 2(5− 2x) = 2x− 20 + 8x = 10x− 20

The critical points of d2 in this case occurs when x = 2. We see that this clearly a local minimum,
and it is a global minimum because x = 2 is the only critical point. By plugging 2 back into our
equation for y, we find that the point (2, 1) is the point on the line closest to the origin.

For b), we have that:

d2 = (x− 2)2 + (y − 0)2 = (x− 2)2 + x4

Taking a derivative we get that:

dd2

dx
= 2(x− 2) + 4x3 = 4x3 + 2x− 2

This part can only be done with calculator, so my apologies for this problem. In particular,
x ≈ .589 is a critical point of d2, and this then ends up being global minimum for d2.

For c), we have that:

d2 = (x− 2)2 + (y − 2)2 = (x− 2)2 + (x3 − 2)2

Taking a derivative, we get that:

dd2

dx
= 2(x− 2) + 6x2(x3 − 2) = 6x5 − 12x2 + 2x− 2

This one can also only be done with a calculator, I am again sorry, this is actually a problem
from the textbook, and I thought it would work out nicer. In the problem x ≈ 1.248 is a critical
point, and it also ends up being a global minimum.

iv) An object with mass m is dragged along a horizontal plane by a force acting along a rope attached
to the object. If the rope makes an angle θ with a plane, then the magnitude of the force is:

F = µmg

µ sin θ + cos θ
where g is the acceleration due to gravity, and µ is a dimensionless constant called the coefficient
of friction. For what value of θ is F minimized?

We need to take a derivative of F with respect to θ. Note that physically, θ is constrained to the
interval [0, π/2]. We take a derivative of F with respect to θ:

dF

dθ
= µmg · sin θ − µ cos θ

(µ sin θ + cos θ)2
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Note that in the interval [0, π/2], the denominator is never zero as both sin θ and cos θ are positive.
It follows that critical points occur when:

sin θ − µ cos θ = 0⇒ tan θ = µ

It follows that tan−1(µ) is our critical point, and since tan θ is an increasing function on [0, π/2]
we know that for θ < tan−1(µ) we must have that tan(θ) < µ hence and for tan−1(µ) < θ we
have that µ < tan θ, hence dF/dθ goes from negative to positive at tan−1(µ) and so tan−1(µ) is
a global minimum on [0, π/2].
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